On Using Very Large Target Vocabulary for Neural Machine Translation

نویسندگان

  • Sébastien Jean
  • Kyunghyun Cho
  • Roland Memisevic
  • Yoshua Bengio
چکیده

Neural machine translation, a recently proposed approach to machine translation based purely on neural networks, has shown promising results compared to the existing approaches such as phrasebased statistical machine translation. Despite its recent success, neural machine translation has its limitation in handling a larger vocabulary, as training complexity as well as decoding complexity increase proportionally to the number of target words. In this paper, we propose a method based on importance sampling that allows us to use a very large target vocabulary without increasing training complexity. We show that decoding can be efficiently done even with the model having a very large target vocabulary by selecting only a small subset of the whole target vocabulary. The models trained by the proposed approach are empirically found to match, and in some cases outperform, the baseline models with a small vocabulary as well as the LSTM-based neural machine translation models. Furthermore, when we use an ensemble of a few models with very large target vocabularies, we achieve performance comparable to the state of the art (measured by BLEU) on both the English→German and English→French translation tasks of WMT’14.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vocabulary Manipulation for Neural Machine Translation

In order to capture rich language phenomena, neural machine translation models have to use a large vocabulary size, which requires high computing time and large memory usage. In this paper, we alleviate this issue by introducing a sentence-level or batch-level vocabulary, which is only a very small sub-set of the full output vocabulary. For each sentence or batch, we only predict the target wor...

متن کامل

Factored Neural Machine Translation

We present a new approach for neural machine translation (NMT) using the morphological and grammatical decomposition of the words (factors) in the output side of the neural network. This architecture addresses two main problems occurring in MT, namely dealing with a large target language vocabulary and the out of vocabulary (OOV) words. By the means of factors, we are able to handle larger voca...

متن کامل

Speeding Up Neural Machine Translation Decoding by Shrinking Run-time Vocabulary

We speed up Neural Machine Translation (NMT) decoding by shrinking run-time target vocabulary. We experiment with two shrinking approaches: Locality Sensitive Hashing (LSH) and word alignments. Using the latter method, we get a 2x overall speed-up over a highly-optimized GPU implementation, without hurting BLEU. On certain low-resource language pairs, the same methods improve BLEU by 0.5 points...

متن کامل

Improving Japanese-to-English Neural Machine Translation by Paraphrasing the Target Language

Neural machine translation (NMT) produces sentences that are more fluent than those produced by statistical machine translation (SMT). However, NMT has a very high computational cost because of the high dimensionality of the output layer. Generally, NMT restricts the size of the vocabulary, which results in infrequent words being treated as out-of-vocabulary (OOV) and degrades the performance o...

متن کامل

Attention-based Vocabulary Selection for NMT Decoding

Neural Machine Translation (NMT) models usually use large target vocabulary sizes to capture most of the words in the target language. The vocabulary size is a big factor when decoding new sentences as the final softmax layer normalizes over all possible target words. To address this problem, it is widely common to restrict the target vocabulary with candidate lists based on the source sentence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015